
JOURNAL OF PROPULSION AND POWER
Vol. 9, No. 3, May-June 1993

Nonreflecting Boundary Conditions of Three-Dimensional Euler
Equation Calculations for Strut Cascades

K. Imanari* and H. Kodamaf
Ishikawajima-Harima Heavy Industries, Tokyo, Japan

In this article, three-dimensional nonreflecting boundary conditions regarding pressure waves and associated
components in density and velocity waves have been formulated and applied to time-marching Euler equation
calculations of steady flows around uncambered thick strut cascades. The linearized solutions including a Fourier-
Bessel double expansion with an exponential variation in the axial direction have been developed for far-field
perturbations from the uniform freestream with subsonic axial velocity in a cylindrical annular duct, and used
to provide the information for the correction of boundary conditions. Numerical examples for the symmetric
struts, and the nonuniform strut cascades comprising two types of vanes, have demonstrated the correctness
and accuracy of the present method, allowing a considerable reduction of the computational domain.
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circumferentially averaged Mach number
isentropic Mach number along blade surface or
midpitch line
Mach number of mean flow averaged both in the
circumferential and radial directions
number of circumferential and radial retained
terms in a Fourier-Bessel finite double series
mean and perturbation components of static
pressure
coordinate in radial direction
time
perturbation components of radial velocity
mean and perturbation components of axial
velocity
perturbation components of tangential velocity
coordinate in axial direction
numerical pressure perturbation from the mean
pressure p0
dimensionless coordinate in tangential direction
ratio of specific heats
eigenvalues of pressure wave
mean and perturbation components of density
circular frequency

Subscripts
in = upstream boundary location
out = downstream boundary location
In = /th radial and nth circumferential mode

Received May 13, 1992; presented as Paper 92-3045 at the AIAA/
SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit,
Nashville, TN, July 6-8, 1992; revision received Oct. 26, 1992; ac-
cepted for publication Dec. 18,1992. Copyright © 1992 by the Amer-
ican Institute of Aeronautics and Astronautics, Inc. All rights re-
served.

*Research Engineer, Research and Development Department, Aero-
engine and Space Operations.

tManager, Research and Development Department, Aero-engine
and Space Operations.

0 = mean quantity averaged both in the
circumferential and radial directions of flow
variable

Introduction

I N the steady numerical calculations of turbomachinery flows
with subsonic axial velocities, upstream and downstream

boundaries are located at a finite distance from the cascade,
whereas the boundary conditions commonly used in the cal-
culation are based on the conditions which should be ideally
achieved at infinity, such as uniform flow variables and zero
stream wise gradient in the flow properties. Consequently,
nonphysical reflections of the flow disturbances propagated
from the cascade may occur at the boundaries in greater or
lesser degree. In order to eliminate the effect of nonphysical
reflections on numerical solutions, the distance from the cas-
cade to an upstream or downstream boundary has to be large
enough to attenuate the flow disturbances at the boundaries
to an acceptable level.

For the case of strut cascades, such as bypass strut/pylon
in a turbofan engine, the pressure perturbations induced by
the vanes are so large that computational domains of consid-
erable size for both upstream and downstream regions are
required to perform three-dimensional flow calculations prop-
erly. One of the answers to this problem would be an appli-
cation of nonreflecting boundary conditions which prevent
nonphysical reflections from being produced at the bound-
aries, so that the computational domain can be reduced with
little disturbance of the correct flow solution. This leads to
greater computational efficiency.

Verdon and Casper1 have developed the upstream and
downstream boundary conditions which consider outgoing
pressure waves in the far field for unsteady aerodynamic cal-
culations on two-dimensional cascades using the linearized
potential equations. Whitehead2 used a similar approach for
both unsteady and steady potential flow calculations around
two-dimensional cascades. These ideas were extended to the
two-dimensional linearized Euler equations for unsteady cas-
cade flows by Hall and Crawley.3

Perm and Gustafsson4 derived the boundary conditions for
steady inviscid flow calculations of a two-dimensional duct,
using the solutions of the linearized Euler equations. A similar
method was developed by Hirsch and Verhoff5 for two-di-
mensional uncambered cascade flows. They have shown that
their method can reduce the computational domain consid-
erably, while keeping the accuracy. Giles6 formulated both
unsteady and steady nonreflecting boundary conditions for
two-dimensional time-dependent Euler equation calculations.
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He performed steady flow calculations of a turbine cascade,
showing fair savings in computational meshes. His method
accounted for the incoming waves due to nonphysical reflec-
tions. After separation of numerical perturbations at the
boundaries into incoming and outgoing modes by the relation
between one-dimensional characteristic and primitive varia-
bles [see (5.9) and (5.10) of Ref. 7], the former modes were
removed to avoid nonphysical reflections. Saxer and Giles8

applied the quasi-three-dimensional nonreflecting boundary
conditions to three-dimensional steady calculations of a tran-
sonic axial flow turbine stage, including the mixing plane at
the stator/rotor interface. This method may be useful if the
blade pitch is much smaller than the tip radius, but would
produce some errors when calculating a flow around typical
strut cascades on which the blade pitch is comparable with
the tip radius.

In this article, a method to treat the boundary conditions
for three-dimensional time-marching Euler equation calcu-
lations of steady flows around uncambered thick strut cas-
cades has been developed in order to accept boundaries much
closer to the cascades. The size of the computational grids is
thereby reduced. The three-dimensional linearized solutions
regarding pressure waves and associated components in den-
sity and velocity waves have been formulated for far-field
perturbations from the uniform freestream with subsonic axial
velocity in a cylindrical annual duct, and used to provide the
information for the correction of boundary conditions. The
construction of nonreflecting boundary conditions begins by
decomposition of numerical solutions into the incoming and
outgoing waves for each flow variable at the boundaries by
using the linearized solutions. The correction of boundary
conditions is made by removing the incoming pressure waves
and associated quantities. Numerical examples for the sym-
metric struts and the nonuniform strut cascades comprising
two types of vanes are shown to confirm the validation of the
present method.

Formulation
Consider three-dimensional time-dependent Euler equa-

tions to calculate steady flows around uncambered strut cas-
cades in a coaxial cylindrical duct of infinite axial extent. The
governing equations can be linearized near upstream and
downstream boundaries if it is assumed that the perturbation
quantities of flow variables are small compared to the mean
quantities averaged both in the circumferential and radial
directions. The resultant equations are
Continuity

Momentum

Energy

Dt Po

Dp _ 1 Dp
Dt ~ a E>7

(1)

(2)

(3)

where length scale is normalized by the tip radius. The vector
u is the form of velocity perturbations defined by

II = (Ue, Uz, Ur)

a0 indicates the velocity of sound defined by

(4)

(5)

D/Dt represents the substantive derivative defined by

D_ _ ^
Dt ~ dt >£ (6)

Furthermore, V is the differential operator defined by

V = (— - -\rd6 ' dz ' a/- (7)

The following equations are derived from Eqs. (1-3):

— (V x «) = 0

Dt Dt \ Po

(8)

(9)

(10)

Equation (8) indicates the acoustic wave equation in the con-
vective systems. Equations (9) and (10) mean that vorticity
and entropy are convected downstream by the mean axial
velocity w0, respectively.

The perturbation in pressure is assumed to be

p = 2j 2j C/?<w>(r)exp(Az)exp(i<uf + w0)
1 = 0 n = 0

(11)

where R(n\r) is a complete set of orthonormal radial eigen-
functions. The eigenfunction R(n\r) is constructed as nor-
malized combinations of the Bessel functions of the first and
second kinds of order n. They are obtained as a solution to

(12.)

(12b)

(12c)

dr = 0 at r = h and 1

dr = S,n

where k^ is the corresponding radial eigenvalues and 8lm
denotes Kronecker delta.

Substitution of the assumed solution ofp into Eq. (8) gives
the axial eigenvalues

. _/n, A2/n - I - M l

Therefore, the pressure perturbation is given as

P =

C2ln exp(A2/nz)] (14)

Equation (14) shows that the pressure field is constructed
of two waves, one of which attenuates in the upstream di-
rection (Aa) and the other in the downstream (A2) for subsonic
flows.

The potential components in the velocity waves and density
wave, which are associated with pressure waves, can be de-
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scribed by

t = i 2 p0r(ia) + w0A1/n)

Po(io) + w0A1/n)

dr
M0Al/n)

exp(A1/nz)

p0r(ia)

dr
_ Po(i<*)

exp(A2/nz)

(15)

The plane wave represented by (/, n) = (0, 0) is excluded
from the perturbation quantities.

Numerical experience indicates that co can be assumed zero
for steady flow calculations in the time-marching procedure,
since a flow solution at every time step can be approximated
to be quasisteady as long as there is no source of unsteady
incoming wave.

Reflecting Boundary Conditions
At the upstream boundary, four physical quantities such as

stagnation pressure, stagnation temperature, yaw flow angle,
and pitch flow angle are specified in the present analysis. They
are held uniform in the circumferential direction. At the
downstream boundary, static pressure is fixed uniform.

Nonreflecting Boundary Conditions

Upstream Boundary Conditions
This boundary condition begins by expanding the numerical

perturbations of pressure 8p and its gradient in the axial di-
rection at the boundary into Fourier-Bessel double finite se-
ries as follows:

8p(r,0,zin) = S S mr)exp(m0)[C1/nexp(A1/nzfn)
/=0 n=0

C2/n exp(A2/nzjn)]
L-l N-l

•exp(A1/nz,.n) exp(A2(nz,n)]

(16a)

(16b)

where 8p and its gradient in the axial direction are extrapo-
lated from the interior flowfield. These perturbation quan-
tities involve both incoming and outgoing contributions. C1/n
is the amplitude for each mode of the outgoing pressure waves,
and C2in is the amplitude for incoming waves. Rewriting Eqs.
(16a) and (16b) into the form of each Fourier-Bessel mode
with substitution of zero into zin, leads to the simple expres-

sion of C1/n and C2/n, using the orthogonality condition [Eq.

Clln = [(tyn - A2/MM/n)/(A1/n - A2/n)] (17a)

Q/n = [(M/wA1/n - Nln)l(\lln - A2/n)] (17b)

where Mln and A^/n respectively denote the amplitudes de-
scribed by Eqs. (18a) and (18b)

f2"(r) Jo 8p(r, 8, O)exp(-m^) d0 dr

(18a)

1 f1

Mln = —ZTT Jh

JT ̂
(18b)

The incoming pressure waves and associated components
in density and velocity waves are identified with nonphysical
reflections at the upstream boundary, because there must be
no incoming pressure perturbation in the present study.
Therefore, they should be removed and the outgoing potential
perturbations are considered at the boundary. The resulting
equations can be expressed as

ur

p .

L-l K-l

= 2 2/=o k=o

-inRf>(r)
u0Xlln)

(19)
,(10) + MQ Allr.)

-dfarfC">(r)
dr

,(lft> + MoAllr.)

The mean quantities of density, axial velocity, and pressure
at the boundary are obtained by averaging the numerical so-
lutions, both in the circumferential and radial directions. Vor-
ticity and entropy components can be considered into the
boundary conditions if they are known at infinite upstream.

Downstream Boundary Conditions
The Fourier-Bessel expansions of both 8p and its gradient

in the axial direction at the boundary can be obtained in the
same way as the upstream boundary conditions, except zout
replaces zin in Eqs. (16a) and (16b). In contrast to the up-
stream boundary, Clln corresponds to an incoming mode, and
C2ln to an outgoing mode at the downstream.

Consequently, the final expression of pressure perturbation
at the downstream boundary is

P = (20)

The above perturbation is added to the mean pressure pre-
viously specified.

Numerical Examples
Numerical examples are provided for the symmetric struts

and the nonuniform strut cascades comprising two types of
vanes. The calculation conditions are shown in Table 1 for
both of them. In the present examples, there was no pertur-
bation in vorticity and entropy at infinite upstream. The Euler
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Table 1 Symmetric and nonuniform struts

Case 1 Case 2 Case 3
Inlet Mach number
Hub-to-tip radius
Large strut

Blade number
Chord-to-tip radius
Max thickness-to-tip radius

Small strut
Blade number
Chord-to-tip radius
Max thickness-to-tip radius

0.52
0.4

11
0.25
0.075 (hub), 0.05 (tip)

0.52
0.99

4
0.65
0.13

0.325
0.065

0.52
0.6

4
0.65
0.1

0.25
0.05

Grid
Axially extended
Axially restricted

21 x 91 x 21
21 x 27 x 21

31 x 71 x 3
31 x 31 x 3

31 x 71 x 11
31 x 31 x 11

a) c)

Fig. 1 Isopressure distribution at midspan for case 1 (increments
between isopressure lines are 1% of inlet stagnation pressure): a) non-
reflecting boundary conditions on restricted grid, b) reflecting bound-
ary conditions on extended grid, and c) reflecting boundary conditions
on restricted grid.

0.55

—— Reflecting b.c on extended grid
-—- Reflecting b.c. on restricted grid

+• Present b.c. on restricted grid

0.45
50

%span from hub
100

Fig. 2 Circumferentially mass-averaged Mach number distribution
at the upstream boundary of restricted grid for case 1.

solver based on Denton's explicit scheme,9 applying finite
volume formulation, was used to obtain steady flow solutions
on a time-marching procedure.

In case 1, relatively low hub-to-tip radius ratio of 0.4 and
a strut configuration with radially varied thickness were cho-
sen to produce a highly three-dimensional pressure field. Fig-
ure 1 shows the isopressure distribution at the midspan, com-
paring the results obtained for the extended and restricted
domains, the latter with the corrected boundary treatment.
As noticed by the unsymmetrical distribution in Fig. Ic, the
static pressure field was affected by the reflecting boundary
conditions. The level of error at the boundaries was 4-5%
of the inlet stagnation pressure, compared to Fig. Ib which
was a reference result on the axially extended grid. On the
other hand, when the nonreflecting boundary conditions were
introduced (Fig. la) a symmetric distribution was clearly ob-
tained even with the restricted computational region. Figures
2 and 3 show the spanwise distribution of Circumferentially

0.55

• Reflecting b.c on extended grid
- Reflecting b.c. on restricted grid
Present b.c. on restricted grid

0.45
10050

%span from hub
Fig. 3 Circumferentially mass-averaged Mach number distribution
at the downstream boundary of restricted grid for case 1.

——— Reflecting b.c on extended grid
--—- Reflecting b.c. on restricted grid

+ Present b.c. on restricted grid

50
%chord from L/E

100

Fig. 4 Isentropic blade surface Mach number distribution at midspan
for case 1.

mass-averaged Mach number. It is seen in the figures that the
radial distribution was also affected by the nonphysical re-
flections. A good agreement was obtained in the results be-
tween the reference computation on the extended grid and
the calculation with the corrected boundary treatment, even
though the latter used the restricted gird. Conversely, the
results using the reflecting boundary conditions on the re-
stricted grid involved an error of 0.02-0.03 in Mach number
at both endwalls. Figures 4 and 5 show the axial distribution
of isentropic Mach number on blade surface and midpitch line
at the midspan, respectively. The error of 0.03-0.04 in blade
surface Mach number, due to the nonphysical reflections, was
removed almost completely by the use of the present bound-
ary treatment.

Figure 6 shows the extended and restricted computational
grids for the nonuniform struts of case 2, where a nearly two-
dimensional flowfield was produced by setting hub-to-tip ra-
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• Reflecting b.c on extended grid
- Reflecting b.c. on restricted grid
Present b.c. on restricted grid

50
%chord from L/E

100

Fig. 5 Isentropic midpitch Mach number distribution at midspan for
case 1.

a) b)

Fig. 6 Computational grid for case 2: a) axially extended and
b) axially restricted.

——— 2D Singularity method
o Present method Restricted grid
+ Present method Extended grid

-0.1

Circumferential location [deg]

Fig. 7 Static pressure perturbation at the upstream boundary of
restricted grid for case 2.

dius ratio to 0.99. For the purpose of validating the present
method, the calculation results were compared with those
produced by a two-dimensional singularity superposition
method with Prandtl-Glauert transformation.10 This singular-
ity method has already been verified by comparing with ex-
perimental data for strut/pylon cascades. Figures 7 and 8 show
Cp in the circumferential direction at the upstream and down-
stream boundary locations of restricted grid. Here, TV = 12
and L — 2 were used in the Fourier-Bessel finite expansion.
The use of the larger number did not improve the flow so-
lutions in this case. A good agreement was obtained among
the three kinds of calculations in each figure. Small differences
among the results in Figs. 7 and 8 are possibly due to the
second-order nonlinear effects.

The configurations and flow conditions treated in case 3
were similar to those of a bypass duct of typical turbofan
engines, namely hub-to-tip radius ratio 0.6 and mean inlet

—— 2D Singularity method
° Present method Restricted grid
+ Present method Extended grid

45 90
Circumferential location [deg]

Fig. 8 Static pressure perturbation at the downstream boundary of
restricted grid for case 2.

b)

Fig. 9 Isopressure distribution at tip for case 3 (increments between
isopressure lines are 1% of inlet stagnation pressure): a) nonreflecting
boundary conditions on restricted grid, b) reflecting boundary con-
ditions on extended grid, and c) reflecting boundary conditions on
restricted grid.

number 0.52. Figure 9 shows the isopressure distribution at
tip. The improvement by applying the present method was
almost the same as that for case 1, qualitatively and quanti-
tatively. The results at midspan or hub also indicate essentially
the same behavior. N = 12 and L = 10 were large enough
to obtain an acceptable solution.

The above results for cases 1-3 indicate that the present
boundary conditions can allow a considerable reduction of
the computational domain while maintaining the accuracy.

Conclusion
Three-dimensional nonreflecting boundary conditions re-

garding pressure waves and associated quantities have been
formulated and applied to time-marching Euler equation cal-
culations of steady flows around uncambered thick strut cas-
cades. The numerical examples for the symmetric struts and
the nonuniform strut cascades comprising two types of vanes
have shown the correctness and accuracy of the present method,
allowing a considerable reduction of the computational do-
main.
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